The Hydrology and Ice-cover of Teshekpuk Lake in a Changing Arctic Climate

Christopher D. Arp Water and Environmental Research Center, University of Alaska Fairbanks

Benjamin M. Jones Alaska Science Center, U.S. Geological Survey Geophysical Institute, University of Alaska, Fairbanks

Talk Outline

- 1. Natural history of Teshekpuk Lake
- 2. Thermokarst lake hydrology & ice dynamics
- 3. Methods for reconstructing ice records
- 4. Teshekpuk Lake ice cover history
- 5. Climate conditions leading short and long openwater seasons
- 6. Impacts on hydrology and ecology

wave-cut scarp

postulated shoreline

50 km

50 mi

age of shoreline = latest Pliocene early Pleistocene Gubik mostly marine

Gubik mostly nonmarine Fish Creek shorezone facies wave-cut scarp

50

bay silts overlain by fluvial sand

Brooks Range Foothills

main sources of information Williams et al, 1977 Carter et al, 1979 Carter (1981) Carter & Galloway, 1985 Dinter et al., 1990 Galloway & Carter (1993) McDougall, 1995

70°

<mark>69</mark>°

Early explorers map dating to 1830s

*note Tesh as separate lakes

North Lake/Derksen Basin

Modern day expansion rates

Teshekpuk Lake is very fresh! Specific Conductance ranges from 250 – 350 uS/cm

Arp et al 2011 *Polar Biology*

Wildlife - Caribou

Wildlife - Fish

Species	1990-92	2003-05
Broad whitefish	Х	Х
Humpback whitefish	Х	Х
Least cisco	Х	Х
Round whitefish	Х	Х
Bering cisco	Х	Х
Arctic grayling	Х	Х
Pink salmon	Х	
Arctic char		Х
Lake trout		Х
Burbot	Х	Х
Northern pike	Х	Х
Slimy sculpin		Х
Alaska blackfish		Х
Threespine stickelback		Х
Ninespine stickelback	Х	Х

Moulton et al 2007

Wildlife - Invertebrates

Lake TypeTotal Volume (ha-m)Percent of AreaThaw9817316.9Depression31295153.9Riverine500238.6Teshekpuk12000020.6

First estimate of lake surface water storage

Based on surface area to volume relationship for three lake types

Arctic Lake Change Questions

- 1. What are the processes underlying observed changes in lakes across permafrost zones?
- 2. What are the relative roles of lake expansion by thermokarst erosion vs. variation in water balance?
- 3. Do lakes respond to climate change uniformly within a region?
- 4. What is the role of lake bathymetry and ice phenology in geomorphic and hydrologic processes?

Comparing Lake Change Mechanisms between Grounded-ice and Floating-ice Lakes

Arp et al 2011 Hydrological Processes

Methods for Reconstructing Ice Regimes

Integrated Monitoring, Remote Sensing, and Modeling

• Temperature sensors (2007-09) – detect ice out and ice formation (high resolution, short period)

- MODIS (2004-08, Arp et al 2010 JAWRA) and Landsat (1974-2009, this study)
- bracket ice out and ice formation (low resolution, moderate period)
- Ice growth model (modified Stefan equation based on FDD) and ice decay model (Belillo et al 1964 based on TDD) both driven by air temperature from TLSA (1998-2009) and Barrow (1947 – 2009)

Results from Previous Work and Evaluation of Certainty

Teshekpuk Lake ice cover history

Ice-out Timing Analysis (1974 – 2009)

Ice-on Timing Analysis (1974 – 2009)

Ice-out and Ice-on Timing (1947 – 2009)

Ice Free Duration (1947 – 2009)

Climate Conditions leading to Short and Long Open-water Periods on Teshekpuk

Temperature Regimes of Perennial Ice Cover Years (blue) vs. Longest Ice-Free Duration Years (red)

Temperatue (C, 9-d mean)

Closer Look at Average (black), Long (red), and Short (blue) Ice Free Periods

Effects of Air Temperature considered major driver of Ice Formation and Decay

Other Drivers of Lake Ice Dynamics

- 1. Snow
- 2. Wind
- 3. Solar Radiation
- 4. Lake morphometry

Impact of Ice-cover on Hydrology

The role of Ice Cover and Dynamics on Lake Hydrology and other Processes

Rough Estimate of Teshekpuk Lake Water Balance (1977 – 2008)

Teshekpuk Lake - Ice jams, wind, and outflow

Geomorphic Processes – Thermokarst Erosion

Arp et al 2011 Hydrological Processes

Hydrologic Processes – Water Balance

Arp et al 2011 Hydrological Processes

Temperatue (C, 9-d mean)

