

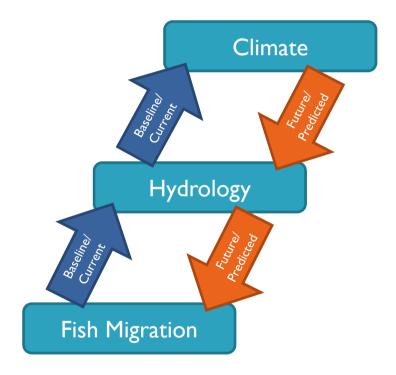
Linking North Slope Climate, Hydrology, and Fish Migration

Erica Betts

Water and Environmental Research Center

University of Alaska Fairbanks

April 4, 2011


Outline

- Introduction
- Hydrology
- Fish Migration
- Climate Change
- Research
- Results
- Next Steps

Background

- Climate change impacts on fish and wildlife populations?
 - Important pathways?
 - Mechanisms?
- Linkages important to arctic environments

Hydrologic Response

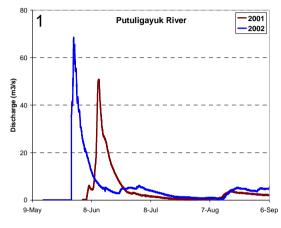
0 10 20 30 40 Kilometers Putuligayuk River Arctic Foothills Kuparuk River **Brooks Range**

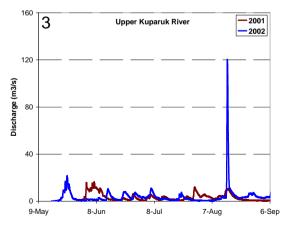
Introduction

Hydrology

Migration Climate

Change


Research


Results

Next Steps

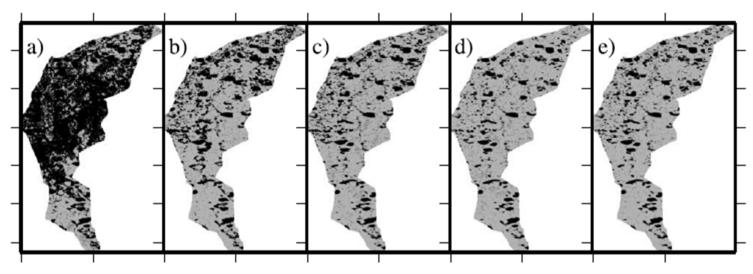
Fish

1600 2 Lower Kuparuk River —2001 —2002 —20

Kane, D.L. and Hinzman, L.D., 2008. Climate data from the North Slope Hydrology Research project. University of Alaska Fairbanks, Water and Environmental Research Center. http://www.uaf.edu/water/projects/NorthSlope/

Hydrology

Fish Migration


Climate Change

Research

Results

Next Steps

Hydrologic Connectivity

(a) 14 June 2000, (b) 21 June 2000, (c) 5 July 2000, (d) 22 July 2000, and (e) 7 September 2000

Date	Saturated Extent	Change
14 June 2000	315 km^2	
21 June 2000	129	73 percent
5 July 2000	98	
22 July 2000	72	
7 Sept. 2000	84	

Hydrology

Fish

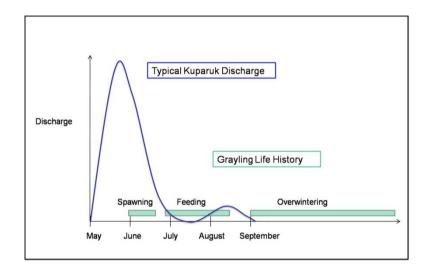
Migration

Climate Change

Research

Results

Next Steps

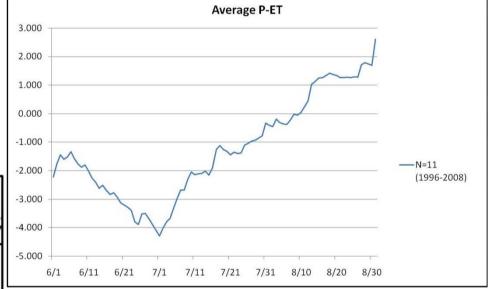

Fish Migration

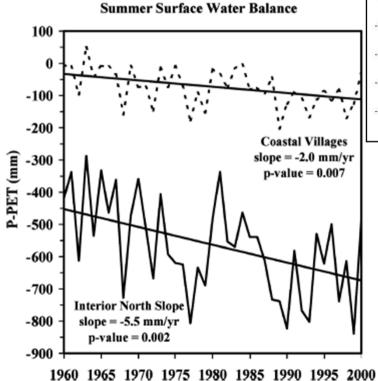
Arctic grayling migration

- After break-up grayling leave overwintering sites for spawning grounds
- Utilize smaller ponds and streams for rearing or feeding grounds
- Must migrate back to overwintering sites before freeze up

Introduction Hydrology

Fish Migration


Climate Change


Research

Results

Next Steps

Climate Change

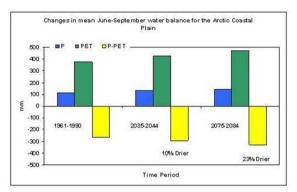
Hinzman, L.D. et al. (2005) Climatic Change 72, 251-298

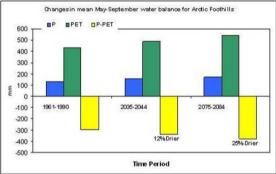
Hydrology

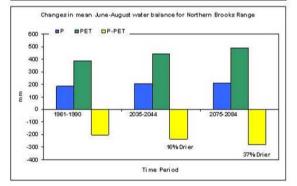
Fish Migration

Climate Change

Research

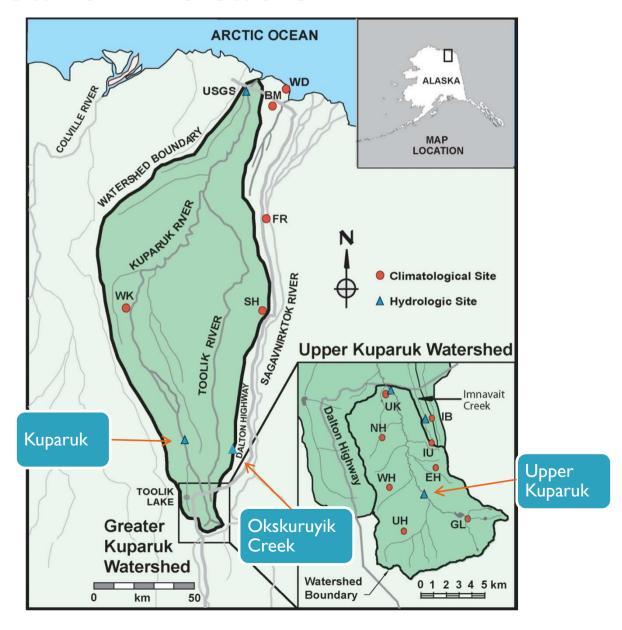

Results


Next Steps


Climate Change

Hydrology

Fish Migration


Climate Change

Research

Results

Next Steps

Research Location

Barriers to Migration

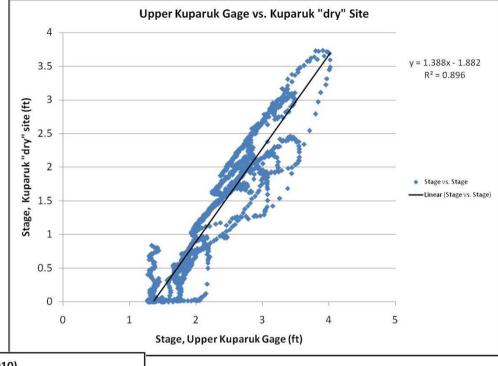
- Hyporheic flow
 - Spatial and temporal exchange of channel water with associated riverine and floodplain sediments.
- In the arctic, hyporheic zone constrained by active layer depth below stream channel
- During periods of low stream flow – areas with strong hyporheic flow appear dry

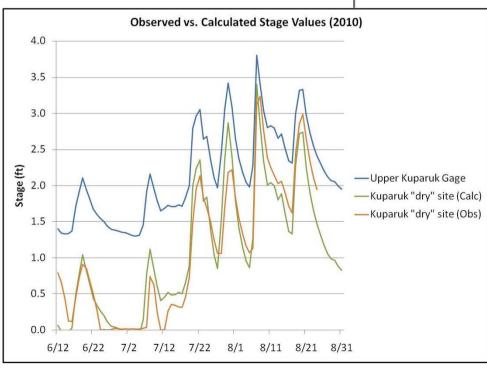
"Dry" event occurs when streamflow becomes 100% hyporheic

Results

Introduction

Hydrology


Fish Migration


Climate Change

Research

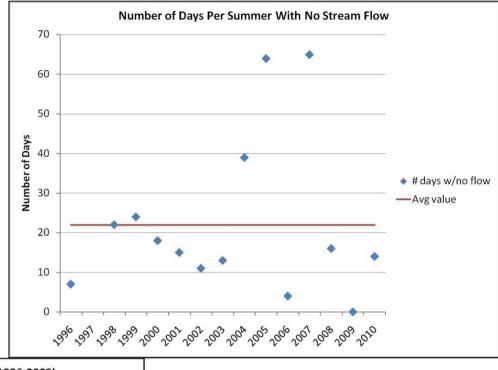
Results

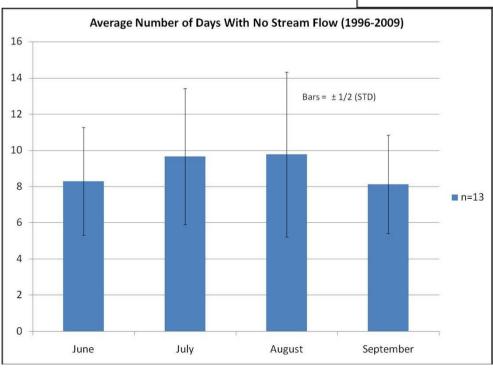
Next Steps

Results

Introduction

Hydrology

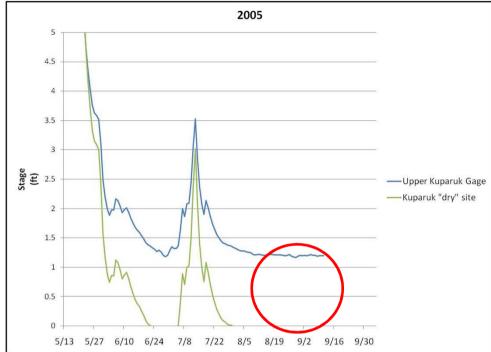

Fish Migration


Climate Change

Research

Results

Next Steps



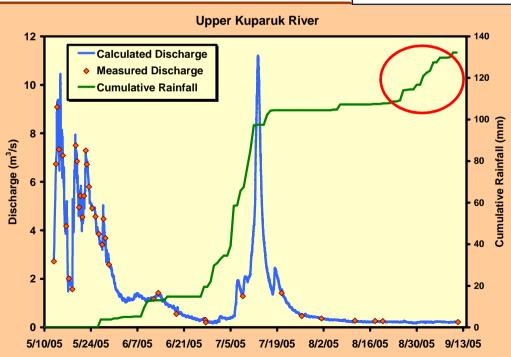
What's Next?

- Collect stage data from all three "dry" locations
- Install piezometers at one or more locations
- Determine atmospheric drivers of "dry" conditions
- Assess impact on Arctic grayling

Next Steps

Introduction

Hydrology


Fish Migration

Climate Change

Research

Results

Next Steps

Acknowledgements

Committee Members

- Doug Kane, UAF/WERC
- Amy Tidwell, UAF/WERC
- Amanda Rosenberger, UAF/SFOS
- Jeff Adams, FWS
- David Atkinson, Uvic/IARC

Collaborators

- Philip Martin, FWS
- Fairbanks FWS Fisheries Staff including Nicole Legere
- Linda Deegan, Woods Hole Marine Biological Lab

Funding

USFWS, NFWF, WWF, WERC

Field Work

Joel Homan, John Mumm, Fabien Rigault

° QUESTIONS?