Using Hydrodynamic Modeling and Fish Passage Windows to Evaluate Potential Barriers in River Systems Under Changing Climate Regimes

Matt Blank, Ph.D. Mike Cox, P.E. OASIS Environmental, Inc.

© 2010 OASIS Environmental, Incorporated. All rights reserved. Private and confidential.

Oasis environmental

Overview of Talk

- Background
 - Aquatic Barriers
 - Factors Affecting Passage
 - Assessment Techniques
- Hydrodynamic Modeling and Passage Windows
- Climate Change Scenario Evaluation

Aquatic Barriers in Lower 48 and Alaska

- Estimated 1.4 million stream-road crossings in U.S. (U.S. Fish and Wildlife, National Fish Passage Program, unpublished data).
- 2.5 million aquatic barriers in U.S. by culverts, dams and canals (National Fish Passage Summit, 2006).
- 10,000 culverts on fish bearing streams on federal lands in Oregon and Washington: 2,600 barriers, \$375 million cost to correct problem (USGAS, 2001).
- 30 of 38 culverts inventoried in the Hoonah Ranger District in Southeast Alaska were barriers to juvenile salmonids (Riley, 2003).

Physical Factors Influencing Fish Passage

- High water velocity
 - excessive turbulence
- Shallow water depth
- Outlet drop
 - pool depth/leap height ratio
 - jump location
 - air entrainment
- Debris/sediment blockage

Fish Locomotion

- Species and size
- Temperature
- Dissolved oxygen
- Motivation
- Gender
- Physical condition
- Disease
- Sexual maturity

Types of Barriers and Passage Windows

- Total Barrier
- Partial Barrier
- Temporal Barrier
- No Barrier

Assessment Techniques

• <u>Direct Approach</u> Field experiment that directly measures fish movement.

•Mark-recapture study

- •PIT tagging study
- •Radio telemetry
- Visual observations

• <u>Indirect Approach</u> Approximate movement potential by comparisons.

•Hydraulic/Hydrodynamic modeling

•Comparisons between upstream vs. downstream fish population characteristics

•Genetic differences

Assessment Techniques

<u>Direct Approach</u> Field experiment that directly measures fish movement.

- Mark-recapture study
- PIT tagging study
- Radio telemetry
- Visual observations

<u>Indirect Approach</u> Approximate movement potential by comparisons .

• Regional screen/matrix

•Hydraulic/Hydrodynamic modeling

 Comparisons between upstream vs. downstream fish population characteristics

• Genetic differences

Hydrodynamic Model Development

1) Developed a Computational Fluid Dynamics model using ANSYS CFX

to analyze 3-Dimensional Flow through a Barrier.

2) Measured 3-D flow field using ADV.

Cross section view of longitudinal velocity (x-velocity) in culvert (Powers, 1998)

Model Validation

Model Validation

Energy Paths

$$F = 0.5C_d \rho A_s (V - V_f)^2$$

Oasis Environmental

Energy Paths

3-D Assessment

•Estimate 3-D velocity field.

- •Find minimum energy path for each starting point.
- •Estimate passage using velocities along each path.

Energy Paths

Energy Paths

Comparison to Observed Data

Climate Change Scenario

Predicted Hydrologic Alterations: Increased temperatures resulting in warmer water, changes in timing and magnitude of precipitation and runoff.

Scenario: Climate change results in warmer water (i.e. reduced swimming performance).

Question: How could this affect passage windows and fisheries management priorities?

Climate Change Scenario: Passage Window

0as1s

ENVIRONMENTAL

Climate Change Scenario: Prioritization with Passage Window

Oasis Environmental

Climate Change Scenario: Prioritization with Passage Window

Scenario: climate change results in warmer water during fish migration.

	% of time as barrier		
Structure	Present Scenario	Climate Scenario	% Increase
1	15	40	167
2	36	52	44
3	54	67	24
4	78	100	28
5	30	50	67
6	35	47	34
7	62	76	23
8	55	82	49
9	40	65	63

Questions?

