A COMPREHENSIVE APPROACH TO ESTIMATE HYDROKINETIC RESOURCES ON THE TANANA RIVER AT NENANA, ALASKA

Horacio TonioloJack SchmidRowland PowersPaul DuvoyJerry Johnson

University of Alaska Fairbanks

AWRA- AK 2011 Annual Conference Chena Hot Springs

OUTLINE

- ➤Study Site
- ➢Our Approach
 - ✓ Field Work

- Bathymetric Surveys
- ADCP Measurements
 - oTurbulence Measurements
- Sediment Transport
- Bed forms
- ✓ Numerical Modeling
 - Power Density
- ➤Conclusions

Study Site

□ Bed sediment: sand/gravel

Bathymetric Surveys

2009 and 2010

Conducted by Terrasond

MV Irish Eyes

- Multibeam
 Echo sounder
- GPS RTK
- o ADCP

(Q = 1141 m³/s)

Turbulence

Steepness ratio of dunes and small superimposed dunes

Date	Dunes			Small Superimposed Dunes		
	Minimum	Average	Maximum	Minimum	Average	Maximum
24 June 2010	0.007	0.010	0.013	0.008	0.024	0.042
9 August 2010	0.007	0.018	0.031	0.011	0.019	0.030
26 August 2010	0.008	0.016	0.030	0.010	0.027	0.056
23 September 2010	0.008	0.017	0.029	0.013	0.021	0.040

Bed forms

→ dune → ■→ small dune → discharge

- One-dimensional
 - Advantage: Very simple Provides average information along the crosssection and depth – Only looks property variations downstream.
 - Disadvantage: Very simple Many processes are not represented.
- Two-dimensional
 - Advantage: Provides information in the downstream and transversal directions.
 - Disadvantage: Does not provide information on secondary flows.
- Three-dimensional
 - Advantage: Can account for processes involving all the directions (x, y, and z).
 - Disadvantage: Very computational demanding.

Numerical Modeling CCHE2D Model

- Developed by the National Center for Computational Hydroscience and Engineering (NCCHE), University of Mississippi (<u>http://www.ncche.olemiss.edu</u>).
- Depth-integrated two dimensional model for studying steady/unsteady flows in open channels with irregular cross-sections, topography, and bank protection structures

Power Density

Basic Equation

$$Ke = \frac{1}{2}\rho V^3$$

Ke: power/area *ρ:* water density *V:* velocity

Validation

Average difference between modeled and measured velocities is around 3 percent.

Numerical Modeling Power Density (Watts/m²)

Maximum power density = $6,500 \text{ W/m}^2$ (Q = $1,141 \text{ m}^3/\text{s}$) Maximum power density = $13,500 \text{ W/m}^2$ (Q = $1,784 \text{ m}^3/\text{s}$)

Conclusions

Approach involves

□Field measurements

Hydraulic parameters

□Numerical modeling

- Power density
- Analysis
 - Channel stability

THANKS!