SELECTING APPROPRIATE TECHNIQUES FOR EVALUATING EFFECTS OF HYDROELECTRIC PROJECT DEVELOPMENT AND OPERATION ON AQUATIC RESOURCES

> Presented by – Dudley Reiser, Stuart Beck and MaryLouise Keefe R2 Resource Consultants Redmond, Washington Anchorage, Alaska

Alaska AWRA Meeting -April 4-6, 2011 PRIMARY "POTENTIAL" HYDRO-RELATED EFFECT ON FISH =

FLOW

Spawns questions of:

HOW CAN FLOW RELATED EFFECTS OF HYDRO PROJECTS INFLUENCE FISH POPULATIONS?

UPSTREAM MIGRATION

Streamflow influenced parameters: physical barriers, turbidity, water depth – minimum, water velocity – maximum, water temperature.

SPAWNING

Streamflow influenced parameters: water depth, water velocity, substrate, water temperature, dissolved oxygen, cover

Suitable

Reduced Flows

Reduced Water Velocities • Decreased Food Production • Reduced Water Quality

Extremely Reduced Flows • Decreased Water Velocities/Depth • Increased Temperature • Decreased Oxygen • Increased Sedimentation • Stranding

DOWNSTREAM PASSAGE

*Movement typically synchronous with runoff; turbidity, freshets, water temperature

HABITAT FORMATION AND FUNCTION

Sediment transport – pools/riffles, riparian habitat, substrate quality, aquifer recharge ,hyporheic zone.

ICE FORMATION AND FUNCTION

*Channel formation, sediment transport, side channel and off-channel connectivity, overwintering habitat conditions.

Side Channel Connectivity

*Fry nursery habitat, juvenile rearing habitat, velocity and thermal refuge habitats, spawning habitat, gravel and wood recruitment.

Pulse Type Flows – Ramping Rates Stranding Potential

Channel – Riparian-Q Interactions

Freshwater – Estuarine Dependencies

Common Hydro-Flow Related Issues

- □ Fish (and other aquatic biota) habitat based flows
- Peaking/Load following impacts stranding
- Flushing flows sediment transport
- Channel forming flows sediment and bed movement
- Riparian/Process flows floodplain function
- Side channel connectivity
- Pulse flows adult attraction/smolt outmigration
- Temperature regulation thermal impacts?
- Water quality DO, TDG, etc....
- Upstream passage
- Downstream passage

General Methods to Assess Effects

- Spatial Habitat Requirements and Impacts
 - Many different methods
 - □IFIM PHABSIM1D- and 2D
 - modeling most common
 - See IFC 2004 for more methods
 - Consider hierarchical approach

Conceptual Hierarchical Approach to Assessing Instream Flow Needs

Tennant Method

Hydrology based - % of Average Annual Flow

Table 1. Instream flow regimes for fish habitat (Tennant, 1976).

Narrative Descriptions	Recommended Base Flow Regimes (QAA)			
of Flows	Oct. – Mar.	AprSept.		
Flushing Flow	200%	200%		
Optimal Range	60 - 100%	60 - 100%		
Outstanding	40%	60%		
Excellent	30%	50%		
Good	20%	40%		
Fair	10%	30%		
Poor or Minimum	10%	10%		
Severe Degradation	10%	10%		

Indicators of Hydrologic Alteration (Richter et al. 1996)

Hydrological Based

Comparison of 32 hydrological parameters relative to unaltered vs. altered conditions

Wetted Perimeter

WP – "inflection points" = minimum flow

Wetted Perimeter, Inflection Point Flows

PHABSIM – 1-dimensional modeling Habitat:Q

Weighted usable area (WUA) v Q – <u>starting point</u> Incremental method – evaluate tradeoffs

Weighted Usable Area Curves of Coho Salmon

PHABSIM -2-dimensional

modeling

HABITAT MAPPING AT MULTIPLE FLOWS

General Methods to Assess Effects

- Side Channel/off-channel Connectivity
 - Side channel main channel stage/discharge relationships: define functionality of channel
 - Aerial Photography/Habitat mapping
 - GIS mapping
- Upstream Fish Passage Issues
 - Powers and Orsborn (1984) physical obstacles (falls, cascades and chutes)
 - Thompson (1974) flow related (minimum depth and maximum velocity)
 - Hydraulic Modeling

General Methods to Assess Effects

- Downstream Passage
 - Hydrologic modeling define project operational effects
 - Species periodicities
- Fluvial Geomorphology Issues
 - Sediment transport modeling
 - Substrate characterization
 - RTK/GPS Topographic surveys

General Methods to Assess Effects

- Temperature Effects
 - Temperature monitoring and modeling
 - SNTEMP surface flow method
 - River1D under ice method
 - FLIR/TIR imaging

A FEW CASE STUDIES

- Whitman/Connell Ketchikan
- Sultan River Washington
- Baker River Washington
- Pit River California
- Clackamas River Oregon

Flow Related Issues

- Instream flows below Connell Dam and Whitman Dam to meet fish spatial needs
- Side channel watering
- Flows below Connell to allow passage through falls – cascades
- Reservoir operation effects on tributary connectivity

Instream Flow Methods

PHABSIM – 1-D modeling: Ward Creek
Wetted Perimeter – Whitman Creek

Fish-Flow Barrier Analysis

- Potential passage barriers in Ward Creek locations and types?
- What are physical and hydraulic conditions at sites
- Does Q influence passage potential?
- "Flow Windows" for passage

Surveys/Barrier Geometry

- Longitudinal bed slope upstream of the barrier (Se),
- Chute length (LS),
- Elevation difference between barrier crest and streambed of the plunge pool (Z),
- Chute angle (Sp).

FALLS BARRIER ANALYSIS

- •Vertical and Horizontal Distances
- •Plunge Pool Depth
- •Crest Velocity
- •Crest Water Depth

Swimming Performance

PARAMETER		StH	со	СК	Pink	Sock	Chum
Sustained Velocity	(ft/ s)	4.6	3.4	3.4	2.6	3.2	2.6
Prolonged Velocity	(ft/ s)	13.7	10.6	10.8	7.7	10.2	7.7
Burst Velocity	(ft/ s)	26.5	21.5	22.4	15	20.6	15
Minimum Swimming Depth	(ft)	0.55	0.55	0.55	0.55	0.55	0.55

BAKER DAM PROJECT Puget Sound Energy

FLOW RELATED ISSUES

- Instream Flows for Fish
- Side Channel Habitats
- LWD Distribution and Utility
- Ramping Rates and Varial
 - **Zone Formation**
 - Redd dewatering
 - BMI dewatering

Upper and Lower Baker Developments

<section-header>

Lower Baker Development

Baker Project Instream Flow Study Area

Daily and Weekly Flow Range

Varial Zone

<image>

Potential Redd Dewatering

METHODS

HYDROPS Ops Model

UNSTEADY Flow Attenuation Model

- PHABSIM 1-D; 2-D considered but not used
- IHA used to evaluate effects of different project operations on suite of 40 flow metrics

Normative Flow regime generally favored

Exceptions – if Fish Flows suggest higher flows

- Side Channel Mapping
- Effective Habitat Model
- Varial Zone Analysis

EFFECTIVE SPAWNING /INCUBATION HABITAT

Based on hourly hydrographAccounts for cumulative

spawning activityAccounts for risk of

redd scour/dewatering during incubation

•Chinook salmon spawning at Transect 14 of Middle Skagit River selected to illustrate model

Conditions on March 15 – Spawning Habitat

Value

Integrated Operations Model and Spawning/Incubation Model used to evaluate tradeoffs between power generation – egg survival.

One of many models used to evaluate and negotiate operating conditions for license

Henry M. Jackson Hydroelectric Project (FERC 2157) Public Utilities District No. 1 of Snohomish County

Operational Priorities

1. Water supply for City of Everett

- 2. Instream flow needs
- 3. Power generation

Increases complexity in defining acceptable flow regime

Instream Flow Study:

Project Objectives – Methods

 Develop reach-specific habitat:flow relationships for target species/lifestages – Apply 1-D PHABSIM modeling.

* Develop integrated <u>aquatic habitat model</u> that produces <u>a time series</u> of data over a range of flow conditions and under select alternative <u>operational</u> <u>scenarios</u>.

Link to \rightarrow

Reach 2: Spawning

Time Series of Chinook spawning Weighted Usable Area in Reach 2

→ Habitat Duration Chinook spawning in Reach 2

Chinook Spawning Habitat Summary Average Weighted Usable Area (1,000 m²)

Value

- Integrated Operations Model and Habitat Model used to evaluate tradeoffs between power generation – water supply – habitat.
- Modeling used to negotiate operating conditions for the next licensing term (2011 to 2061)

PIT 3, 4, & 5 PROJECT PACIFIC GAS & ELECTRIC COMPANY

Flow Related Issues

Instream flows for fish
Flows for FHYLF
Microhabitat-Flow Relationships
Riparian Vegetation Inundation

METHODS

- PHABSIM 1-D Model (existing model)
- PHABSIM 2-D Model (PG&E completed in-house)
- Habitat Mapping R2
- Amphibian Surveys
- Riparian Inundation Surveys

Habitat Mapping Spring Flow Releases / Aerial Photography

- Base, 250, 400, 600, 800, 1200 cfs
- Photograph Entire Pit 3, 4, 5 Reach
- □ 1:7200 Scale, 10 cm Pixel
- Goal: Produce Photographs That Could be Used to Map Microhabitat Polygons and Riparian Vegetation

Field Mapping

Complex Small-Boulder Gardens (Riffles/Pocket Water) Distinguished by Geomorphic and Hydraulic Features, →Heterogeneous Polygons With %'s

Digitized Maps (detail)

Microhabitat-Flow Curves:

By Site

Eagle Foraging: Pool Tail Habitat

Value

Habitat Mapping analysis was coupled with results from other modeling efforts to derive "agreed-to" flow regime.

Portland General Electric – Clackamas River Project

Smolt Mortality Model

- Model used to investigate system level alternatives
 - Case 1: Existing conditions
 - Case 2: Full turbine exclusion screens at North Fork
 - Case 3: Full turbine exclusion screens at all projects
 - Case 4: Full screens at NF, Spill at FD, surface collector at RM
 - Case 5: Barrier net at NF, Full screens at FD, surface collector at RM with partial turbine guidance deflector
 - Cases 6 & 7 : Investigate route specific mortality for fry passage

Visual Basic

Smolt Mortality Model Data Sources – Chinook

Periodicity

Based on last 5 years data from the North Fork collection/bypass system

NF Bypass Efficiency vs. Flow

Interpreted from Cramer & Assoc. Report

NF Turbine Passage

Interpreted from 2001 Acoustic tag study by Normandeau & HTI

NF spillway mortality

- Interpreted for 2001 Normadeau Assoc. Report
- RM surface collection bypass
 - Interpreted from 2001 Obermeyer weir passage study by Normandeau
- Remaining variable estimated model used for sensitivity

Fish – Flow Distributions

Annual Mortality

🎆 Mortaliy	Statistics f	or All years	3										×
Copy Close	•												
Case COHO 1	I, Existing C	onditions											
Select View	Period: All Y	ears 🔻	9	elect View:	Passage Mort	ality Rate	e 💌						
			Mary America	Chandrad	í – r								
Passage	Min Annual Mortality	Ave Annual Mortalitu	Max Annual Mortalitu	Deviation	Rnot All	Min Annual Mortality			Ave Annual Mortality		Max Annual Mortality		
No. IL Co. L	mondary	moreany	mondary	Deviduon	0.07	1.0%	2.0%	2.0%	% of Martalines	£.0%	e 0%	7.0%	0.0%
North Fork	0.0%	0.0%	0.0%	0.0%	100%	10%	20%	30%	408	30%	400	401	400
Rupace 1	0.0%	0.0%	0.0%	0.0%	1 1	1		1		i i	i		
Bupass 2	0.0%	0.402/8	0.45%	0.034%		1	i.			÷	÷		
Bunass 3	2 709%	4 692%	5.0%	0.508%		<u> </u>				 i	÷		
Spillway	0.0%	0.682%	6.977%	1.276%								_	
Turbine	0.782%	1.352%	1.43%	0.135%		<u> </u>	i.			i i	i		
Faradav					ļĮ	1	i i			- i	i		
Spillway	0.0%	0.004%	0.061%	0.008%	ΙŁ	÷.	i i			i i	i i		
Bypass 1	0.0%	0.0%	0.0%	0.0%	l f	1	i i			i i	i		
Reservoir	0.0%	0.0%	0.0%	0.0%	l †	1	i i			i i	i i		
Bypass 2	0.0%	0.0%	0.0%	0.0%	l t	1	i i			i i	i		
Bypass 3	0.0%	0.0%	0.0%	0.0%	II	j.	i i			i i	i		
Turbine 1	0.416%	0.966%	3.307%	0.529%		i i		<u> </u>			- i		
Turbine 2	0.122%	0.859%	4.98%	1.02%		-					i i		
River Mill					1 +	-	Ì			i	Ì		
Reservoir	0.0%	0.0%	0.0%	0.0%	1 †	1	i			i	i		
Spillway	0.0%	0.646%	6.583%	1.149%	•	<u> </u>							
Bypass	0.0%	0.001%	0.001%	0.0%	I I	i	i			i	i	i	
Turbine	0.489%	0.693%	0.95%	0.067%		= ;	i	i	i	i	i	i	
System	8.541%	10.326%	26.557%	3.328%									

Survival goals established in settlement will be evaluated with DM3

POPULATION MODELING?

"ALL MODELS ARE WRONG; BUT SOME ARE USEFUL." – GEORGE EP BOX

Can we predict fish population responses
from hydro related project effects?

How about population responses to "Incremental Q changes"?

Some Existing Population Models

- EDT Ecosystem Diagnosis and Treatment
- FLUSH/CRISP downstream passage
- SLAM Salmon Life Cycle Analysis NFMS/ODFW
- SHIRAZ Stochastic Model
- OBAN Oncorhynchus Bayesian Analysis

Guidelines in Selecting Techniques

- Consider project site specificity in Methods Selection – One Size DOES NOT FIT ALL
- Tailor methods to address specific resource issues/questions
- Consider methods selection based on resource sensitivity to flow modifications and resource value and other considerations?
- Collaboration in methods selection (Debate the Results not the Methods)
- Helps when Resource Agencies have established "a priori" resource goals and objectives

THANK YOU

QUESTIONS ?